A long-term energy efficiency prediction model for the Brazilian automotive industry

DJAN MAGALHÃES CASTRO

Resumo


According to law number 12.715/2012, Brazilian government instituted guidelines for a program named Inovar-Auto. In this context, energy efficiency is a survival requirement for Brazilian automotive industry from September 2016. As proposed by law, energy efficiency is not going to be calculated by models only. It is going to be calculated by the whole universe of new vehicles registered. In this scenario, the composition of vehicles sold in market will be a key factor on profits of each automaker. Energy efficiency and its consequences should be taken into consideration in all of its aspects. 

In this scenario, emerges the following question: which is the efficiency curve of one automaker for long term, allowing them to adequate to rules, keep balancing on investment in technologies, increasing energy efficiency without affecting competitiveness of product lineup? Among several variables to be considered, one can highlight the analysis of manufacturing costs, customer value perception and market share, which characterizes this problem as a multi-criteria decision-making. To tackle the energy efficiency problem required by legislation, this paper proposes a framework of multi-criteria decision-making. The proposed framework combines Delphi group and Analytic Hierarchy Process to identify suitable alternatives for automakers to incorporate in main Brazilian vehicle segments. A forecast model based on artificial neural networks was used to estimate vehicle sales demand to validate expected results. This approach is demonstrated with a real case study using public vehicles sales data of Brazilian automakers and public energy efficiency data.


Referências


ABDULLAH, L.; ZAMRI, N. On the causes of road accidents: Fuzzy TOPSIS. In:

Computer Research and Development, 2010 Second International Conference on. [S.l.:

s.n.], 2010. p. 497–501. 39, 63

AJUKUMAR, V. N.; GANDHI, O. P. Evaluation of green maintenance initiatives in

design and development of mechanical systems using an integrated approach. v. 51, p.

– 46, 2013. ISSN 0959-6526. Disponível em:

article/pii/S0959652613000152>. 35

AL-OQLA, F. M. et al. Predicting the potential of agro waste fibers for sustainable

automotive industry using a decision making model. v. 113, p. 116 – 127, 2015.

ISSN 0168-1699. Disponível em:

S0168169915000265>. 63

ANFAVEA. Anuário da Indústria Automobilística Brasileira 2015. [S.l.], 2015. Disponível

em: . Acesso em: 02/08/2015. 15

ANOJKUMAR, L.; ILANGKUMARAN, M.; SASIREKHA, V. Comparative

analysis of {MCDM} methods for pipe material selection in sugar industry.

v. 41, n. 6, p. 2964 – 2980, 2014. ISSN 0957-4174. Disponível em:

//www.sciencedirect.com/science/article/pii/S0957417413008452>. 21, 22

ANP. Agencia Nacional do Petroleo 2015. [S.l.], 2015. Disponível em:

//www.anp.gov.br/>. Acesso em: 02/08/2015. 15

ASGARI, N. et al. Sustainability ranking of the {UK} major ports: Methodology

and case study. v. 78, p. 19 – 39, 2015. ISSN 1366-5545. Disponível em:

//www.sciencedirect.com/science/article/pii/S1366554515000150>. 23, 24

AYOKO, G. A. et al. Characterization of {VOCs} from {LPG} and unleaded petroleum

fuelled passenger cars. v. 115, p. 636 – 643, 2014. ISSN 0016-2361. Disponível em:

. 63

AZADNIA, A. H. et al. Sustainable supplier selection based on self-organizing map

neural network and multi criteria decision making approaches. v. 65, p. 879 – 884, 2012.

ISSN 1877-0428. Disponível em:

S1877042812051993>. 21

BADGER, D. et al. Should all literature reviews be systematic? v. 14, n. 3, p.

–230, 2000. Disponível em:

>. 20

BAI, C.; FAHIMNIA, B.; SARKIS, J. Sustainable transport fleet appraisal using a hybrid

multi-objective decision making approach. p. 1–32, 2015. ISSN 0254-5330, 1572-9338.

Disponível em: . 19, 63

BANAITIENE, N. et al. Evaluating the life cycle of a building: A multivariant

and multiple criteria approach. v. 36, n. 3, p. 429–441, 2008. Disponível em:

. 18, 21

BAYKASOğLU, A. et al. Integrating fuzzy {DEMATEL} and fuzzy hierarchical

{TOPSIS} methods for truck selection. v. 40, n. 3, p. 899 – 907, 2013. ISSN

-4174. Disponível em:

S0957417412007622>. 39, 63

BEHZADIAN, M. et al. A state-of the-art survey of {TOPSIS} applications.

v. 39, n. 17, p. 13051 – 13069, 2012. ISSN 0957-4174. Disponível em:

//www.sciencedirect.com/science/article/pii/S0957417412007725>. 9, 18, 20, 21, 28, 29,

, 33, 36, 37, 63

BERTRAND, J. W. M.; FRANSOO, J. C. Operations management research

methodologies using quantitative modeling. v. 22, n. 2, p. 241–264, 2002. Disponível em:

. 41

BU, L. et al. Selection of city distribution locations in urbanized areas. v. 39, p. 556

– 567, 2012. ISSN 1877-0428. Disponível em:

article/pii/S1877042812005976>. 36, 63

BüYüKöZKAN, G.; ÇIFçI, G. A novel hybrid {MCDM} approach based on fuzzy

DEMATEL, fuzzy {ANP} and fuzzy {TOPSIS} to evaluate green suppliers.

v. 39, n. 3, p. 3000 – 3011, 2012. ISSN 0957-4174. Disponível em:

//www.sciencedirect.com/science/article/pii/S0957417411012930>. 21, 35, 39, 63

CHAKRABORTY, D.; VAZ, W.; NANDI, A. K. Optimal driving during electric

vehicle acceleration using evolutionary algorithms. v. 34, p. 217 – 235, 2015. ISSN

-4946. Disponível em:

S1568494615002513>. 63

CHAKRABORTY, S. Applications of the MOORA method for decision making in

manufacturing environment. v. 54, n. 9, p. 1155–1166, 2010. ISSN 0268-3768, 1433-3015.

Disponível em: . 21

CHANTAKSINOPAS, I.; OOTHONGSAP, P.; PRAYOTE, A. Network selection delay

comparison of network selection techniques for safety applications on VANET. In:

Network Operations and Management Symposium (APNOMS), 2011 13th Asia-Pacific.

[S.l.: s.n.], 2011. p. 1–7. 24, 63

CHATTERJEE, P.; ATHAWALE, V. M.; CHAKRABORTY, S. Selection of materials

using compromise ranking and outranking methods. v. 30, n. 10, p. 4043 – 4053, 2009.

ISSN 0261-3069. Disponível em:

S0261306909002234>. 21, 22

CHEAH, L.; HEYWOOD, J. Meeting US passenger vehicle fuel economy standards in

and beyond. Energy Policy, v. 39, n. 1, p. 454–466, 2011. 00037. 15

CHEN, A.; HSIEH, C.-Y.; WEE, H. M. A resilient global supplier selection strategy—a

case study of an automotive company. p. 1–16, 2014. ISSN 0268-3768, 1433-3015.

Disponível em: . 19

CHEN, J. et al. A multiple attribute-based decision making model for autonomous

vehicle in urban environment. In: Intelligent Vehicles Symposium Proceedings, 2014

IEEE. [S.l.: s.n.], 2014. p. 480–485. 21, 36, 63

CHEN, Y.; KILGOUR, D. M.; HIPEL, K. W. Screening in multiple criteria decision

analysis. v. 45, n. 2, p. 278–290, 2008. Disponível em:

science/article/pii/S0167923607002345>. 21

CHEN, Y. et al. A spatial assessment framework for evaluating flood risk under extreme

climates. v. 538, p. 512–523, 2015. Disponível em:

science/article/pii/S0048969715305957>. 23, 24

CHEN, Y.-J. Structured methodology for supplier selection and evaluation

in a supply chain. v. 181, n. 9, p. 1651–1670, 2011. Disponível em:

//www.sciencedirect.com/science/article/pii/S0020025510003440>. 23

CHICA, M. et al. Integration of an EMO-based preference elicitation scheme into

a multi-objective ACO algorithm for time and space assembly line balancing. In:

Computational intelligence in miulti-criteria decision-making, 2009. mcdm ’09. ieee

symposium on. [S.l.: s.n.], 2009. p. 157–162. 63

CRESWELL, J. W. Research design: Qualitative, quantitative, and mixed methods approaches.

Sage publications, 2013. Disponível em:

en&lr=&id=EbogAQAAQBAJ&oi=fnd&pg=PR1&dq=how+to+elaborate+research+

projects+quantitative&ots=cafQtTSAA9&sig=nORlWMH7mkAcH0S3tBJ4eFhHBJc>.

DAğDEVIREN, M. Decision making in equipment selection: an integrated approach

with AHP and PROMETHEE. v. 19, n. 4, p. 397–406, 2008. Disponível em:

. 24

DATTA, S. et al. ANP based vertical handover algorithm for vehicular communication.

In: Recent Advances in Information Technology (RAIT), 2012 1st International

Conference on. [S.l.: s.n.], 2012. p. 228–234. 63

DEASON, K. S.; JEFFERSON, T. A systems approach to improving fleet policy

compliance within the {US} federal government. v. 38, n. 6, p. 2865 – 2874, 2010.

ISSN 0301-4215. Disponível em:

S030142151000025X>. 43, 63

DENATRAN. Departamento Nacional de Transito. [S.l.], 2015. Disponível em:

. Acesso em: 17/10/2015. 15

DIABAT, A.; KHODAVERDI, R.; OLFAT, L. An exploration of green supply chain

practices and performances in an automotive industry. v. 68, n. 1, p. 949–961, 2013.

ISSN 0268-3768, 1433-3015. Disponível em:

s00170-013-4955-4>. 35, 39, 63

FARAHANI, R. Z.; SteadieSeifi, M.; ASGARI, N. Multiple criteria facility location

problems: A survey. v. 34, n. 7, p. 1689 – 1709, 2010. ISSN 0307-904X. Disponível em:

. 19, 21, 22

FIROUZABADI, S. M. A. K.; HENSON, B.; BARNES, C. A multiple stakeholders’

approach to strategic selection decisions. v. 54, n. 4, p. 851 – 865, 2008. ISSN

-8352. Disponível em:

S0360835207002422>. 19, 43, 63

FRIEND, A. J.; AYOKO, G. A.; GUO, H. Multi-criteria ranking and receptor

modelling of airborne fine particles at three sites in the pearl river delta region

of china. v. 409, n. 4, p. 719 – 737, 2011. ISSN 0048-9697. Disponível em:

. 63

FU, C.; CHIN, K.-S. Robust evidential reasoning approach with unknown

attribute weights. v. 59, p. 9 – 20, 2014. ISSN 0950-7051. Disponível em:

//www.sciencedirect.com/science/article/pii/S095070511400046X>. 63

GIL, A. C. Como elaborar projetos de pesquisa. v. 5, p. 61, 2002. Disponível em:

bimestre_com_respostas_direito.pdf>. 41

GIRUBHA, R. J.; VINODH, S. Application of fuzzy {VIKOR} and environmental

impact analysis for material selection of an automotive component. v. 37, p. 478 – 486,

ISSN 0261-3069. Disponível em:

pii/S0261306912000313>. 21, 22, 35, 39, 63

GOVINDAN, K.; JEPSEN, M. B. ELECTRE: A comprehensive literature review

on methodologies and applications. p. –, 2015. ISSN 0377-2217. Disponível em:

. 18, 21, 29

GOVINDAN, K. et al. Multi criteria decision making approaches for green

supplier evaluation and selection: a literature review. v. 98, p. 66 – 83, 2015.

ISSN 0959-6526. Disponível em:

S095965261300437X>. 23, 29, 34, 35

GOVINDAN, K.; SARKIS, J.; PALANIAPPAN, M. An analytic network processbased

multicriteria decision making model for a reverse supply chain. v. 68,

n. 1, p. 863–880, 2013. ISSN 0268-3768, 1433-3015. Disponível em:

//link.springer.com/article/10.1007/s00170-013-4949-2>. 21, 63

GUMUS, A. T. Evaluation of hazardous waste transportation firms by using a two

step fuzzy-AHP and {TOPSIS} methodology. v. 36, n. 2, p. 4067 – 4074, 2009.

ISSN 0957-4174. Disponível em:

S0957417408001966>. 43, 44

GUO, S.; ZHAO, H. Optimal site selection of electric vehicle charging station by

using fuzzy {TOPSIS} based on sustainability perspective. v. 158, p. 390 – 402, 2015.

ISSN 0306-2619. Disponível em:

S0306261915010181>. 18, 21, 35, 39, 63

HAMZEH, M.; ABBASPOUR, R. A.; DAVALOU, R. Raster-based outranking

method: a new approach for municipal solid waste landfill (MSW) siting. v. 22,

n. 16, p. 12511–12524, 2015. ISSN 0944-1344, 1614-7499. Disponível em:

//link.springer.com/article/10.1007/s11356-015-4485-8>. 34

HASSAN, M. N.; HAWAS, Y. E.; AHMED, K. A multi-dimensional framework

for evaluating the transit service performance. v. 50, p. 47 – 61, 2013. ISSN

-8564. Disponível em:

S0965856413000487>. 23, 63

HERVA, M.; ROCA, E. Review of combined approaches and multi-criteria analysis for

corporate environmental evaluation. v. 39, p. 355 – 371, 2013. ISSN 0959-6526. Disponível

em: . 30

HILL, K.; SZAKALY, S.; EDWARDS, M. How automakers plan their products: A primer

for policymakers on automotive industry business planning. Center for Automotive

Research, 2007. 00013. 17, 19

HISTORY, R. R. C. for; MEDIA, N. Zotero Tool. [S.l.], 2015. Disponível em:

. Acesso em: 02/08/2015. 30

HO, W.; XU, X.; DEY, P. K. Multi-criteria decision making approaches for supplier

evaluation and selection: A literature review. v. 202, n. 1, p. 16–24, 2010. Disponível em:

. 23, 35

HOBBS, B. F.; HORN, G. T. Building public confidence in energy planning: a

multimethod {MCDM} approach to demand-side planning at {BC} gas. v. 25, n. 3,

p. 357 – 375, 1997. ISSN 0301-4215. Disponível em:

science/article/pii/S0301421597000256>. 20, 23

HOBBS, B. F.; MEIER, P. Energy decisions and the environment: a guide to the use

of multicriteria methods. Springer Science & Business Media, 2012. v. 28. Disponível

em:

fnd&pg=PR8&dq=A+Guide+to+the+use+of+Multicriteria+Methods+hobbs&ots=

wn2yA6IebF&sig=b1t84BpmTNrYL9McTfJqRAYDgq4>. 24

HUANG, H. et al. Multi-criteria decision making and uncertainty analysis for materials

selection in environmentally conscious design. v. 52, n. 5, p. 421–432, 2010. ISSN

-3768, 1433-3015. Disponível em:

s00170-010-2745-9>. 21, 22

HWANG, C.-L.; YOON, K. Multiple Attribute Decision Making. Springer Berlin

Heidelberg, 1981. v. 186. (Lecture Notes in Economics and Mathematical Systems,

v. 186). ISBN 978-3-540-10558-9 978-3-642-48318-9. Disponível em:

//link.springer.com/10.1007/978-3-642-48318-9>. 21

HWANG, C.-L.; YOON, K. Multiple attribute decision making: methods and applications

a state-of-the-art survey. Springer Science & Business Media, 2012. v. 186. Disponível

em:

pg=PA1&dq=Multiple+Attribute+Decision+Making:+Methods+and+Applications&

ots=VJf2D5LrUu&sig=0TMv-RfhiVKXWpU2iT7jZ01akdg>. 22

INOVAR-AUTO. INOVAR-AUTO. Brasília, DF, 2012. Disponível em:

//www.planalto.gov.br/ccivil_03/_ato2011-2014/2012/Decreto/D7819.htm>. Acesso

em: 17/10/2015. 15, 20

JAHAN, A. et al. Material screening and choosing methods – a review. v. 31, n. 2, p. 696

– 705, 2010. ISSN 0261-3069. Disponível em:

article/pii/S0261306909004361>. 21, 23, 24, 29, 44

JAHANSHAHLOO, G. R.; LOTFI, F. H.; IZADIKHAH, M. Extension of the

TOPSIS method for decision-making problems with fuzzy data. v. 181, n. 2, p.

–1551, 2006. Disponível em:

S0096300306002852>. 22

JANJIC, A. Two-step algorithm for the optimization of vehicle fleet in electricity

distribution company. v. 65, p. 307 – 315, 2015. ISSN 0142-0615. Disponível em:

. 24, 39, 63

JANJIC, A.; VUKASINOVIC, A. Optimal vehicle fleet mix planning in a distribution

utility using fuzzy multi-criteria decision making. In: EUROCON, 2013 IEEE. [S.l.: s.n.],

p. 1173–1179. 24

JAVID, R. J.; NEJAT, A.; HAYHOE, K. Selection of {CO2} mitigation strategies for

road transportation in the united states using a multi-criteria approach. v. 38, p. 960

– 972, 2014. ISSN 1364-0321. Disponível em:

article/pii/S1364032114004572>. 23, 34, 63

JOZI, S. A. et al. An integrated shannon’s entropy–TOPSIS methodology

for environmental risk assessment of helleh protected area in iran. v. 184,

n. 11, p. 6913–6922, 2011. ISSN 0167-6369, 1573-2959. Disponível em:

//link.springer.com/article/10.1007/s10661-011-2468-x>. 43

KAHRAMAN, C. Fuzzy multi-criteria decision making: theory and applications with

recent developments. Springer Science & Business Media, 2008. v. 16. Disponível

em:

fnd&pg=PR5&dq=Fuzzy+Multi-Criteria+Decision+Making&ots=cLKedRvvGe&sig=

xepQIqGPl33vWDCeETzDMecnKKM>. 22

KAHRAMAN, C.; KAYA, h. A fuzzy multicriteria methodology for selection among

energy alternatives. v. 37, n. 9, p. 6270 – 6281, 2010. ISSN 0957-4174. Disponível em:

. 24

KANNAN, D.; GOVINDAN, K.; RAJENDRAN, S. Fuzzy axiomatic design approach

based green supplier selection: a case study from singapore. v. 96, p. 194 – 208, 2015.

ISSN 0959-6526. Disponível em:

S095965261300930X>. 21

KEELE, S. Guidelines for performing systematic literature reviews in software

engineering. In: Technical report, Ver. 2.3 EBSE Technical Report. EBSE. [s.n.],

01560. Disponível em:

Guidelines%20for%20performing%20SLR%20in%20SE%20v2.3.pdf>. 20, 29, 30, 41

KHORSHIDI, R.; HASSANI, A. Comparative analysis between {TOPSIS} and {PSI}

methods of materials selection to achieve a desirable combination of strength and

workability in al/SiC composite. v. 52, p. 999 – 1010, 2013. ISSN 0261-3069. Disponível

em: . 21, 22

KHORSHIDI, R. et al. Selection of an optimal refinement condition to achieve

maximum tensile properties of al–15%mg2si composite based on {TOPSIS}

method. v. 46, p. 442 – 450, 2013. ISSN 0261-3069. Disponível em:

//www.sciencedirect.com/science/article/pii/S0261306912006814>. 21, 22

KONIDARI, P.; MAVRAKIS, D. A multi-criteria evaluation method for climate

change mitigation policy instruments. v. 35, n. 12, p. 6235–6257, 2007. Disponível em:

. 24

KOTHARI, C. R. Research methodology: Methods and techniques. New Age

International, 2004. Disponível em:

&id=hZ9wSHysQDYC&oi=fnd&pg=PA2&dq=research+methodology+methods+and+

techiniques&ots=1rYdsGc3C4&sig=ikbjV1qbpgAXmi8kEf0yv_umfu0>. 41

KUCUKVAR, M. et al. Stochastic decision modeling for sustainable pavement

designs. v. 19, n. 6, p. 1185–1199, 2014. ISSN 0948-3349, 1614-7502. Disponível em:

. 18, 21

KUMAR, A.; JAIN, V.; KUMAR, S. A comprehensive environment friendly approach

for supplier selection. v. 42, n. 1, p. 109 – 123, 2014. ISSN 0305-0483. Disponível em:

. 21, 36, 63

LEE, G. K. L.; CHAN, E. H. W. The analytic hierarchy process (AHP) approach for

assessment of urban renewal proposals. v. 89, n. 1, p. 155–168, 2007. ISSN 0303-8300, 1573-

Disponível em: .

LEE, S. et al. Prioritizing the weights of hydrogen energy technologies in the sector of

the hydrogen economy by using a fuzzy {AHP} approach. v. 36, n. 2, p. 1897 – 1902,

ISSN 0360-3199. Disponível em:

pii/S0360319910001060>. 24

LEE, S. K.; MOGI, G.; KIM, J. W. Decision support for prioritizing energy technologies

against high oil prices: A fuzzy analytic hierarchy process approach. v. 22, n. 6, p. 915

– 920, 2009. ISSN 0950-4230. Disponível em:

article/pii/S0950423009001090>. 24

LI, G. et al. Fuzzy multiple attribute decision routing in VANETs. In: Communication

Systems (ICCS), 2014 IEEE International Conference on. [S.l.: s.n.], 2014. p. 564–568.

LIANG, X. et al. Using the analytic network process (ANP) to determine method of

waste energy recovery from engine. v. 66, p. 304 – 311, 2013. ISSN 0196-8904. Disponível

em: . 24

LIM, M. C. H.; AYOKO, G. A.; MORAWSKA, L. Characterization of elemental and

polycyclic aromatic hydrocarbon compositions of urban air in brisbane. v. 39, n. 3,

p. 463 – 476, 2005. ISSN 1352-2310. Disponível em:

science/article/pii/S1352231004009380>. 63

LIM, M. C. H. et al. Effect of fuel composition and engine operating conditions

on polycyclic aromatic hydrocarbon emissions from a fleet of heavy-duty diesel

buses. v. 39, n. 40, p. 7836 – 7848, 2005. ISSN 1352-2310. Disponível em:

. 63

LIM, M. C. H. et al. A comparative study of the elemental composition of

the exhaust emissions of cars powered by liquefied petroleum gas and unleaded petrol. v. 40, n. 17, p.

– 3122, 2006. ISSN 1352-2310. Disponível em:

. 63

LIM, M. C. H. et al. The effects of fuel characteristics and engine operating

conditions on the elemental composition of emissions from heavy duty diesel

buses. v. 86, n. 12, p. 1831 – 1839, 2007. ISSN 0016-2361. Disponível em:

. 63

LIM, M. C. H. et al. Influence of fuel composition on polycyclic aromatic hydrocarbon

emissions from a fleet of in-service passenger cars. v. 41, n. 1, p. 150 – 160, 2007.

ISSN 1352-2310. Disponível em:

S1352231006008144>. 63

LOOTSMA, F. A. Multi-criteria decision analysis via ratio and difference judgement.

Springer Science & Business Media, 2007. v. 29. Disponível em:

com.br/books?hl=en&lr=&id=Km_m99RselkC&oi=fnd&pg=PA1&dq=Multi-criteria+

decision+analysis+via+ratio+and+difference+judgement&ots=caLspoBdJl&sig=

pxHa540qiyFCJf5k0lLeRO-eplM>. 18, 21

LUCA, S. d. Public engagement in strategic transportation planning: An analytic

hierarchy process based approach. v. 33, p. 110 – 124, 2014. ISSN 0967-070X. Disponível

em: . 63

MA, J.; KREMER, G. E. O. A fuzzy logic-based approach to determine product

component end-of-life option from the views of sustainability and designer’s perception.

p. –, 2015. ISSN 0959-6526. Disponível em:

article/pii/S095965261501118X>. 39, 63

MAHMOUDI, G.; MULLER-SCHLOER, C. Semantic multi-criteria decision making

SeMCDM. In: Computational intelligence in miulti-criteria decision-making, 2009. mcdm

’09. ieee symposium on. [S.l.: s.n.], 2009. p. 149–156. 63

MAIER, K.; STIX, V. A semi-automated approach for structuring multi criteria

decision problems. v. 225, n. 3, p. 487 – 496, 2013. ISSN 0377-2217. Disponível em:

. 23

MAITY, S. R.; CHAKRABORTY, S. A visual decision aid for gear materials

selection. v. 94, n. 3, p. 199–212, 2013. ISSN 2250-0545, 2250-0553. Disponível em:

. 21, 22

MARDANI, A.; JUSOH, A.; ZAVADSKAS, E. K. Fuzzy multiple criteria decisionmaking

techniques and applications – two decades review from 1994 to 2014.

v. 42, n. 8, p. 4126 – 4148, 2015. ISSN 0957-4174. Disponível em:

//www.sciencedirect.com/science/article/pii/S0957417415000081>. 18, 21, 29, 37

MELA, K.; TIAINEN, T.; HEINISUO, M. Comparative study of multiple criteria

decision making methods for building design. v. 26, n. 4, p. 716–726, 2012. ISSN

-0346. Disponível em:

S1474034612000201>. 35

MILANI, A. S. et al. An application of the analytic network process in multiple

criteria material selection. v. 44, p. 622 – 632, 2013. ISSN 0261-3069. Disponível em:

. 21, 22, 24

MILLER, G. A. The magical number seven, plus or minus two: some limits on

our capacity for processing information. v. 63, n. 2, p. 81, 1956. Disponível em:

. 19

MINTZBERG, H.; RAISINGHANI, D.; THEORET, A. The structure

of"unstructured"decision processes. p. 246–275, 1976. Disponível em:

. 19

MOHAMMADI, M.; TORABI, S. A.; TAVAKKOLI-MOGHADDAM, R. Sustainable hub

location under mixed uncertainty. v. 62, p. 89 – 115, 2014. ISSN 1366-5545. Disponível

em: . 41

MOKHTARIAN, M. N. A new fuzzy weighted average (FWA) method based on

left and right scores: An application for determining a suitable location for a gas

oil station. v. 61, n. 10, p. 3136 – 3145, 2011. ISSN 0898-1221. Disponível em:

. 21

NOORI, M. et al. A stochastic optimization approach for the selection of reflective

cracking mitigation techniques. v. 69, p. 367 – 378, 2014. ISSN 0965-8564. Disponível

em: . 22

OLIVER, H. H. et al. China’s fuel economy standards for passenger vehicles:

Rationale, policy process, and impacts. Energy Policy, v. 37, n. 11, p. 4720–4729,

00049. Disponível em:

S030142150900442X>. 16

ONAT, N. C. et al. Combined application of multi-criteria optimization and life-cycle

sustainability assessment for optimal distribution of alternative passenger cars in u.s.

p. –, 2015. ISSN 0959-6526. Disponível em:

article/pii/S0959652615012421>. 63

ORDOOBADI, S. M.; MULVANEY, N. J. Development of a justification tool for

advanced manufacturing technologies: system-wide benefits value analysis. v. 18, n. 2,

p. 157–184, 2001. Disponível em:

S0923474801000339>. 19

ORJI, I. J.; WEI, S. An innovative integration of fuzzy-logic and systems dynamics in

sustainable supplier selection: A case on manufacturing industry. v. 88, p. 1 – 12, 2015.

ISSN 0360-8352. Disponível em:

S0360835215002788>. 21, 23, 34

POHEKAR, S. D.; RAMACHANDRAN, M. Application of multi-criteria decision

making to sustainable energy planning—a review. v. 8, n. 4, p. 365 – 381, 2004.

ISSN 1364-0321. Disponível em:

S1364032104000073>. 18, 20, 21, 22, 23, 29, 34

PéREZ, J. C.; CARRILLO, M. H.; MONTOYA-TORRES, J. R. Multi-criteria

approaches for urban passenger transport systems: a literature review. v. 226, n. 1, p.

–87, 2014. ISSN 0254-5330, 1572-9338. Disponível em:

article/10.1007/s10479-014-1681-8>. 23, 29

PRODANOV, C. C.; FREITAS, E. C. de. Metodologia do Trabalho Científico:

Métodos e Técnicas da Pesquisa e do Trabalho Acadêmico-2a Edição. Editora

Feevale, 2013. Disponível em:

&id=zUDsAQAAQBAJ&oi=fnd&pg=PA13&dq=Prodanov,+Cleber+Cristiano,+e+

Ernani+Cesar+de+Freitas.+2013.+Metodologia+do+Trabalho+Cient%C3%ADfico:

+M%C3%A9todos+e+T%C3%A9cnicas+da+Pesquisa+e+do+Trabalho+Acad%C3%

AAmico&ots=da059jxcGL&sig=LiWIcZ0ZXLDPD11D2gSqNZAMpiQ>. 41

QIU, N. et al. Crashworthiness analysis and design of multi-cell hexagonal columns

under multiple loading cases. v. 104, p. 89 – 101, 2015. ISSN 0168-874X. Disponível em:

. 63

RAO, R. V. A decision making methodology for material selection using an improved

compromise ranking method. v. 29, n. 10, p. 1949 – 1954, 2008. ISSN 0261-3069. Disponível

em: . 21, 22,

RASSAFI, A. A.; VAZIRI, M.; AZADANI, A. N. Strategies for utilizing alternative

fuels by iranian passenger cars. v. 3, n. 1, p. 59–68, 2006. ISSN 1735-1472, 1735-2630.

Disponível em: . 63

REN, J. et al. Hydrogen economy in china: Strengths–weaknesses–opportunities–threats

analysis and strategies prioritization. v. 41, p. 1230 – 1243, 2015. ISSN 1364-0321. Disponível

em: .

RIEDMILLER, M. Advanced supervised learning in multi-layer perceptrons—from

backpropagation to adaptive learning algorithms. v. 16, n. 3, p. 265–278, 1994. Disponível

em: . 46

SAATY, T. L. The Analytic Hierarchy Process, New York: McGrew Hill. International,

Translated to Russian, Portuguesses and Chinese, Revised edition, Paperback (1996,

, Pittsburgh: RWS Publications, 1980. 00009. 19, 23, 42, 44

SAATY, T. L. Decision making for leaders: the analytic hierarchy process for

decisions in a complex world. RWS publications, 1990. Disponível em:

//books.google.com.br/books?hl=en&lr=&id=c8KqSWPFwIUC&oi=fnd&pg=PT8&

dq=Decision+making+for+leaders:+the+analytic+hierarchy+process+for+decisions+

in+a+complex+world&ots=2KPQBlEMOl&sig=ODT8-fXCuTDtDSy93ia2bhcnWfE>.

, 23, 45, 69

SAATY, T. L. The analytic hierarchy and analytic network processes for the measurement

of intangible criteria and for decision-making. In: Multiple Criteria Decision Analysis:

State of the Art Surveys. Springer New York, 2005, (International Series in Operations

Research & Management Science, 78). p. 345–405. ISBN 978-0-387-23067-2 978-0-387-

-8. Disponível em: .

SAATY, T. L.; OZDEMIR, M. S. Why the magic number seven plus or minus

two. v. 38, n. 3, p. 233–244, 2003. ISSN 0895-7177. Disponível em:

//www.sciencedirect.com/science/article/pii/S0895717703900835>. 19

technologies development solutions in the automotive industry by the {TOPSIS}

multi-criteria decision making method. v. 36, n. 20, p. 13272 – 13280, 2011. ISSN

-3199. Disponível em:

S0360319910013960>. 21, 63

SADIQ, R. et al. Evaluation of generic types of drilling fluid using a risk-based analytic

hierarchy process. v. 32, n. 6, p. 778–787, 2004. ISSN 0364-152X, 1432-1009. Disponível

em: . 21, 22

SAKUNDARINI, N. et al. Multi-objective optimization for high recyclability material

selection using genetic algorithm. v. 68, n. 5, p. 1441–1451, 2013. ISSN 0268-3768, 1433-

Disponível em: .

, 22

SAMARAS, C.; MEISTERLING, K. Life cycle assessment of greenhouse gas emissions

from plug-in hybrid vehicles: implications for policy. v. 42, n. 9, p. 3170–3176, 2008.

Disponível em: . 24

SCOTT, J. A.; HO, W.; DEY, P. K. A review of multi-criteria decision-making methods

for bioenergy systems. v. 42, n. 1, p. 146 – 156, 2012. ISSN 0360-5442. Disponível em:

. 28, 29

SHANIAN, A.; SAVADOGO, O. {TOPSIS} multiple-criteria decision support

analysis for material selection of metallic bipolar plates for polymer electrolyte

fuel cell. v. 159, n. 2, p. 1095 – 1104, 2006. ISSN 0378-7753. Disponível em:

. 21, 22

SOLTANI, A. et al. Multiple stakeholders in multi-criteria decision-making in the context

of municipal solid waste management: A review. v. 35, p. 318–328, 2015. Disponível em:

. 23, 35

STAPLES, M.; NIAZI, M. Experiences using systematic review guidelines. v. 80, n. 9,

p. 1425–1437, 2007. Disponível em:

S0164121206002962>. 29

TAN, R. R. Rule-based life cycle impact assessment using modified rough set induction

methodology. v. 20, n. 5, p. 509 – 513, 2005. ISSN 1364-8152. Disponível em:

. 63

TAN, R. R.; CULABA, A. B.; PURVIS, M. R. I. {POLCAGE} 1.0—a possibilistic

life-cycle assessment model for evaluating alternative transportation fuels. v. 19, n. 10,

p. 907 – 918, 2004. ISSN 1364-8152. Disponível em:

science/article/pii/S1364815203002160>. 63

TAVANA, M.; ZANDI, F. Applying fuzzy bi-dimensional scenario-based model to the

assessment of mars mission architecture scenarios. v. 49, n. 4, p. 629 – 647, 2012.

ISSN 0273-1177. Disponível em:

S0273117711007794>. 21

TSENG, M. L. et al. Using FANP approach on selection of competitive priorities

based on cleaner production implementation: a case study in PCB manufacturer,taiwan. v. 10, n. 1, p. 17–

, 2007. ISSN 1618-954X, 1618-9558. Disponível em:

. 19

TURCKSIN, L.; BERNARDINI, A.; MACHARIS, C. A combined AHP-PROMETHEE

approach for selecting the most appropriate policy scenario to stimulate a

clean vehicle fleet. v. 20, p. 954 – 965, 2011. ISSN 1877-0428. Disponível em:

. 23, 34, 63

UNEP. United Nations Environment Programme. [S.l.], 2015. Disponível em:

. Acesso em: 03/04/2016. 43

U.S. Department of Energy. Where the energy goes: gasoline vehicles. [S.l.], 2015.

Disponível em: . Acesso em: 17/10/2015.

VAHDANI, B.; ZANDIEH, M.; TAVAKKOLI-MOGHADDAM, R. Two novel {FMCDM}

methods for alternative-fuel buses selection. v. 35, n. 3, p. 1396 – 1412, 2011. ISSN

-904X. Disponível em:

S0307904X10003537>. 63

VAHIDI, H. et al. Fuzzy analytical hierarchy process disposal method selection

for an industrial state; case study charmshahr. v. 39, n. 2, p. 725–735, 2013. ISSN

-8025, 2191-4281. Disponível em:

s13369-013-0691-1>. 24

VILLANUEVA-PONCE, R. et al. Impact of suppliers’ green attributes in corporate

image and financial profit: case maquiladora industry. v. 80, n. 5, p. 1277–1296, 2015.

ISSN 0268-3768, 1433-3015. Disponível em:

s00170-015-7082-6>. 21

Vinod Yadav; Milind Kumar Sharma. Multi-criteria decision making for supplier

selection using fuzzy AHP approachnull. v. 22, n. 6, p. 1158–1174, 2015. ISSN 1463-5771.

Disponível em:

1108/BIJ-04-2014-0036>. 21, 23, 24, 34, 35, 39, 63

VINODH, S.; PRASANNA, M.; PRAKASH, N. H. Integrated fuzzy AHP–TOPSIS for

selecting the best plastic recycling method: A case study. v. 38, n. 19, p. 4662 – 4672,

ISSN 0307-904X. Disponível em:

pii/S0307904X14001103>. 44

WADUD, Z. New vehicle fuel economy in the UK: Impact of the recession and

recent policies. Energy Policy, v. 74, p. 215–223, 2014. 00000. Disponível em:

. 15

WANG, L.; XU, L.; SONG, H. Environmental performance evaluation of beijing’s

energy use planning. v. 39, n. 6, p. 3483 – 3495, 2011. ISSN 0301-4215. Disponível em:

. 23, 34

WANG, X. A comprehensive decision making model for the evaluation of green

operations initiatives. v. 95, p. 191 – 207, 2015. ISSN 0040-1625. Disponível em:

. 24

WONG, F. S. Time series forecasting using backpropagation neural networks. v. 2, n. 4,

p. 147–159, 1991. Disponível em:

D>. 46

WU, C.-C. Constructing a weighted keyword-based patent network approach

to identify technological trends and evolution in a field of green energy: a

case of biofuels. p. 1–23, 2014. ISSN 0033-5177, 1573-7845. Disponível em:

. 43

YANG, C.-C.; CHEN, B.-S. Supplier selection using combined analytical hierarchy

process and grey relational analysis. v. 17, n. 7, p. 926–941, 2006. Disponível em:

. 19

YAVUZ, M. et al. Multi-criteria evaluation of alternative-fuel vehicles via a

hierarchical hesitant fuzzy linguistic model. v. 42, n. 5, p. 2835 – 2848, 2015.

ISSN 0957-4174. Disponível em:

S0957417414006964>. 63

YOUSEFI, A.; HADI-VENCHEH, A. An integrated group decision making model and

its evaluation by {DEA} for automobile industry. v. 37, n. 12, p. 8543 – 8556, 2010.

ISSN 0957-4174. Disponível em:

S095741741000432X>. 23, 34, 36, 63

YUN, C.-J.; YEH, C.-H. Customer order dependent supplier selection. In: Next

Generation Information Technology (ICNIT), 2011 The 2nd International Conference

on. [S.l.: s.n.], 2011. p. 57–62. 21, 63

ZEKRI, M.; JOUABER, B.; ZEGHLACHE, D. A review on mobility management and

vertical handover solutions over heterogeneous wireless networks. v. 35, n. 17, p. 2055 –

, 2012. ISSN 0140-3664. Disponível em:

article/pii/S0140366412002526>. 29

ZHANG, G.; PATUWO, B. E.; HU, M. Y. Forecasting with artificial neural

networks:: The state of the art. v. 14, n. 1, p. 35–62, 1998. Disponível em:

. 46

ZHANG, G. P.; QI, M. Neural network forecasting for seasonal and trend time series.

v. 160, n. 2, p. 501–514, 2005. Disponível em:

article/pii/S0377221703005484>. 46

ZIO, S. D.; MARETTI, M. Acceptability of energy sources using an integration of

the delphi method and the analytic hierarchy process. v. 48, n. 6, p. 2973–2991, 2013.

ISSN 0033-5177, 1573-7845. Disponível em:

s11135-013-9935-0>. 21, 43


Apontamentos

  • Não há apontamentos.




Projetos, Dissertações e Teses em Sistemas de Informação e Gestão do Conhecimento
ISSN 2358-5501 (Online)